Equivariant Cohomology in Algebraic Geometry Lecture Two: Definitions and Basic Properties William Fulton Notes by Dave Anderson

نویسنده

  • WILLIAM FULTON
چکیده

For a Lie group G, we are looking for a right principal G-bundle EG → BG, with EG contractible. Such a bundle is universal in the topological setting: if E → B is any principal G-bundle, then there is a map B → BG, unique up to homotopy, such that E is isomorphic to the pullback of EG. See [Hus75] for the existence of these universal principal bundles; we will not need the general story here. We will also find principal G-bundles EGm → BGm, with πi(EGm) = 0 (and H (EGm) = 0) for 0 < i < k(m), where k(m) goes to infinity as m grows. For such bundles, we have H i GX := H (EG× X) = H (EGm × G X) for i < k(m). To see this, we need the following proposition: Proposition 1.1. If E → B and E → B are two principal right Gbundles, and H (E) = H (E) = 0 for 0 < i < k, then there is a canonical isomorphism H (E × X) ∼= H (E × X) for i < k. Proof. Let G act diagonally on E × E, so there is a diagram E ×X E × E ×X E ×X

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Equivariant Cohomology in Algebraic Geometry

Introduced by Borel in the late 1950’s, equivariant cohomology encodes information about how the topology of a space interacts with a group action. Quite some time passed before algebraic geometers picked up on these ideas, but in the last twenty years, equivariant techniques have found many applications in enumerative geometry, Gromov-Witten theory, and the study of toric varieties and homogen...

متن کامل

Equivariant Cohomology in Algebraic Geometry Lecture Nine: Flag Varieties

Remark 0.1. We saw that the study of cohomology and equivariant cohomology of Grassmannians leads to interesting symmetric polynomials, namely, the Schur polynomials sλ(x) and sλ(x|t). These arise in contexts other than intersection theory and representation theory. For example, Griffiths asked which polynomials P in c1(E), . . . , cn(E) are positive whenever E is an ample vector bundle on an n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007